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Abstract

Graph Neural Networks (GNNs) have been suc-
cessfully used in many problems involving graph-
structured data, achieving state-of-the-art perfor-
mance. GNNs typically employ a message-passing
scheme, in which every node aggregates infor-
mation from its neighbors using a permutation-
invariant aggregation function. Standard well-
examined choices like mean or sum aggregation
functions have limited capabilities, as they are not
able to capture interactions among neighbors. In
this work, we formalize these interactions using an
information-theoretic framework that notably in-
cludes synergistic information. Driven by this def-
inition, we introduce the Graph Ordering Attention
(GOAT) layer, a novel GNN component that cap-
tures higher-level dependencies between nodes in
a neighborhood. This is achieved by learning local
node orderings via an attention mechanism and pro-
cessing the ordered representations using a recur-
rent neural network aggregator. This design allows
us to make use of a permutation-sensitive aggrega-
tor while maintaining the permutation-equivariance
of the proposed GOAT layer. The GOAT model
demonstrates its increased performance in model-
ing graph metrics that capture complex informa-
tion, such as the betweenness centrality and the ef-
fective size of a node. In practical use-cases, its
superior modeling capability is confirmed through
its success in several real-world node classification
benchmarks.

1 Introduction

Graph Neural Networks (GNNs) have shown remarkable
success in solving machine learning problems on graphs
[Scarselli et al., 2009; Kipf and Welling, 2017; Bronstein ef
al., 2021]. In these problems, data arises in the structure of
attributed graphs, where in addition to the node and edge sets
defining a graph, a set of feature vectors containing data on
each node is present. The majority of GNNs learn node rep-
resentations using a message-passing scheme [Gilmer et al.,
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2017]. Specifically, in such a message passing neural network
(MPNN) each node iteratively aggregates the feature vectors
or hidden representations of its neighbors to update its own
hidden representation. Since there is no specific node order-
ing, the aggregator has to be a permutation-invariant function
such as max or sum pooling [Xu et al., 2019].

Although MPNNs have achieved great results, they have
severe limitations in learning on graph structures, as they can-
not capture the full range of complex relations between the
nodes in a given neighborhood. Their permutation-invariant
aggregators treat the neighboring nodes as a set and process
them individually, omitting potential interactions between the
large number of subsets that the neighboring nodes can form.
Therefore, current MPNNSs cannot observe the entire struc-
ture of neighborhoods in a graph [Pei et al., 2020] and can-
not capture all dependencies and interactions between them
[Murphy et al., 2019; Wagstaff et al., 2021].

In this paper, to better understand these interactions be-
tween the nodes in a node classification scenario, we intro-
duce the Partial Information Decomposition (PID) framework
[Williams and Beer, 2010] to the graph learning context. We
decompose the information that neighbor nodes have about
the central node, into three parts: unique information from
each node, redundant information, and synergistic informa-
tion due to combined information from multiple nodes. The
concept of synergy expresses the fact that some source vari-
ables give more information when observed together than
they do when observed independently. Synergy is observed
in neuroscience where the target variable corresponds to a
stimulus and the source variables are the responses of differ-
ent neurons [Bizzi and Cheung, 2013]. We show that typical
MPNNs cannot capture redundant and synergistic informa-
tion, leading to insufficient node representations.

To tackle these limitations we propose the Graph Order-
ing Attention (GOAT) layer, a novel and simple architecture
that can capture all sources of information, notably including
the synergistic information between the nodes. We employ a
self-attention to construct a permutation-invariant ranking of
the nodes in each neighborhood before we pass the ordered
sequence into a recurrent neural network aggregator. Using
a permutation-sensitive aggregator like a Long Short-Term
Memory (LSTM) model, we obtain larger representational
power [Murphy et al., 2019] and are able to capture the re-
dundant and synergistic information since we do not assume



independence between the nodes as other aggregators do. We

further argue that the ordering of the neighbors plays a sig-

nificant role in the final representation [Vinyals ef al., 2016]

and demonstrate the effectiveness of GOAT versus other ag-

gregators that are non-trainable or use a permutation-sensitive

aggregator with a random ordering [Hamilton er al., 2017].
Our main contributions are summarized as follows:

1. We present a novel view of learning on graphs based
on information theory and specifically on the Partial In-
formation Decomposition (PID). We argue that captur-
ing redundant and synergistic information between the
nodes leads to more accurate node representations.

2. We propose the Graph Ordering Attention (GOAT) layer,
anovel GNN component that can capture the synergistic
information between the nodes using a recurrent neural
network (LSTM) as an aggregator. We highlight that the
ordering of the neighbors is crucial for the performance
and employ a self-attention mechanism to learn it.

3. We empirically evaluate GOAT on real-world and syn-
thetic node classification and regression datasets and
compare with state-of-the-art GNNs. Our results con-
firm that GOAT can learn accurate node representations
and be state-of-the-art on many benchmarks.

2 Preliminaries and Related Work
We begin by defining our notation and problem context.

Problem Formulation and Basic Notation. Let a graph be
denoted by G = (V, E), where V' = {vy,vq,...,vn} is the
node set and E is the edge set. Let A € RV*Y denote the
adjacency matrix, X = [z1,2o,... ,xN]T € RV*d pe the
node features and Y = [y1,92,...,yn]’ € N the label
vector. We denote the neighborhood of a vertex v by N (v)
such that A(v) = {u : (u,v) € E} and the neighborhood
features by the multiset X,y = {z, : u € N(v)}. We

also define the neighborhood of v including v as N'(v) =
N (v) U {v} and the corresponding features as X5 (). The
goal of semi-supervised node classification and regression is
to predict the labels of a test set given a training set of nodes.

Graph Neural Networks. GNNs exploit the graph struc-
ture A and the node features X in order to learn a hid-
den representation h, of each node u such that the label
Y. can be predicted accurately from h, [Gori et al., 2005;
Scarselli et al., 2009]. Most approaches use a neighborhood
message-passing scheme, in which every node updates its
representation by aggregating the representations of its neigh-
bors and combining them with its previous representation,

m) = Aggregate! ({hgil) TUE N(“)}) ’

h{ = Combine” (hgf—1>,m§f>) ,

where hg ) denotes the feature vector of node u at the [-th
layer of the GNN architecture. Note that we often omit the
superscript () to simplify the notation.

Typically GNNs employ a permutation-invariant “Aggre-
gate” function to yield a permutation-equivariant GNN layer

[Bronstein et al., 2021]. Permutation invariance and equivari-
ance will be defined formally now.

Definition 2.1. Let Sy, denote the group of all permutations
of a set containing M elements. Then, a function f(-) is

* permutation-equivariant if for all 7 € Sy, we have
Ff({a?l, L2y ey CL‘M}) = f({xﬂ-(l), LUW(Q), ce 7$7T(M)})

o permutation-invariant if for all 7 € S); we have
f({xl, T2, ..y I]u}) = f({l’ﬂ.(l), SC.,T(Q), ‘e ,xﬂ(M)}).

2.1 Common Aggregators and Their Limitations

We now describe some of the most well-known aggregators
and discuss their limitations. Our analysis is based on two
important properties that an aggregator should have:

1. Relational Reasoning: As we will show in Section 3,
the label of the node may depend not only on the individ-
ual contribution of each neighbor but also on the fact that
multiple nodes appear together and interact [Wagstaff er
al., 2021]. With the term “relational reasoning” we de-
scribe the property of capturing these interactions when
we aggregate the neighborhood messages. We refer to
these interactions as “synergistic information.”

2. Imjectivity: As shown in [Xu er al., 2019], a power-
ful GNN should map two different neighborhoods, i.e.,
multisets of feature vectors, to different representations.
This means that the aggregator should be injective.

The mean and max are standard pooling functions that
are used to aggregate neighborhood information [Kipf and
Welling, 2017]. However, they are neither injective [Xu er
al., 2019] nor can they perform relational reasoning as they
process each node independently. The summation operator
followed by a multilayer perceptron was recently proposed
[Xu et al., 2019]. This aggregator is injective but still cannot
perform relational reasoning and it usually requires a large la-
tent dimension [Wagstaff ez al., 2019; Wagstaff er al., 2021].

In the Graph Attention Networks (GAT) [Veli¢kovic et al.,
2018al, the representation of each node is computed by ap-
plying a weighted summation of the node representations.
However, the attention function is not injective since it fails to
capture the cardinality of the neighborhood. Recently, an im-
proved version of the GAT was published [Brody et al., 2021]
and also, a new type of attention was proposed [Zhang and
Xie, 20201, that preserves the cardinality of the neighborhood
and therefore is injective. Nevertheless, none of these mod-
els can capture the interaction between two or more neighbor
nodes as each attention score is computed based only on the
representations of the central node and one neighbor node.

2.2 Permutation Sensitive Aggregators

A few authors propose the use of permutation-sensitive ag-
gregators to tackle the limitations of typical permutation-
invariant pooling operators. For example in the Janossy Pool-
ing [Murphy er al., 2019] approach, a permutation-invariant
aggregator is obtained by applying a permutation-sensitive
function to all n! permutations. Since the computational cost
of this approach is very high, they also propose an approx-
imation, sampling only a limited number of permutations.
Similarly, in the GraphSage [Hamilton et al., 2017] model,



a random permutation of each neighborhood is considered
and then passed to an LSTM. This method allows them to
demonstrate that even in the graph domain, where typically
no natural ordering of nodes is known, there exist some or-
derings that lead to better model performance [Vinyals et al.,
2016]. Whether these high performance orderings are discov-
ered during the training process is left to chance however. In
contrast, our method learns a meaningful ordering of neigh-
bors with low complexity by leveraging the attention weights.

3 An Information Theory Perspective for
Graphs

In this section, we show how the neighborhood dependen-
cies can be encoded in the Partial Information Decomposi-
tion framework. This decomposition will motivate us to build
a more expressive GNN layer, that is able to capture various
interactions among neighborhood subsets.

3.1 Partial Information Decomposition for Graphs

The domain of information theory can provide a well-
established framework for measuring the neighborhood influ-
ence. A few findings on graph representation learning capital-
ized on information-theoretic tools, either assuming a proba-
bility distribution over the attribute vectors [Veli¢kovié er al.,
2018b; Peng et al., 2020] or over the structural characteris-
tics [Luo et al., 2021; Dasoulas et al., 2020].

The majority of GNNs (including the attention-based mod-
els) use an aggregation that omits the information among the
neighbors, e.g connected triplets, quadruples and n-tuples.
Mutual information is a measure that can give us insight in
the omitted informative interactions.

Definition 3.1 (Structure-Informed Mutual Information). For
a given node u € V, let Hyr,,) = [hvys- o o ] €
BW(“)'X‘Z denote the hidden representations of the nodes in
N (u). Let, also, Ag denote the adjacency matrix of the sub-

graph induced by A (u) and the structure-informed represen-

_ Hmu)} (d+IN (u)) X [N (w)|
tation HE M) = [ As e R denote the

augmented neighbors representation including edge informa-

tion. Then, if we assume that H G (o) and h,, follow distribu-
tions p(Hf[ v )) and p(h,), respectively, the mutual informa-

tion between h,, and HE M is defined as

)

€]
I(hy N(u) // o HN(v)

p (o HG)
W dh, dHf[() 1)

Following [Williams and Beer, 2010], (1) can be decom-
posed into three components as follows:

= Y U,+R+S, )
ueN (v)

log

I(hy; HG

where

Ay, > Quy, = Qupy > Quy,

Figure 1: In the neighborhood of node u, the attention scores
ayy;’s contribute to the unique information terms U,;’s. The
relationships among the attention scores of the neighbors con-
tribute to the synergy information S. The yellow circle in-
cludes dependencies among w1, ug and us, and the light blue
curved square refers to all neighbors. us, ug share the same
representation, contributing to the redundant information.

s the unique information U, Yu € N (v) corresponds to
the information a neighbor carries independently and no
other neighbor has,

* the redundant information R is the information that can
be found overlapping in two or more neighbors (e.g. in
identical feature vectors) and

* the synergistic information S expresses the rest of the
information that can be captured only if we take the in-
teractions among the neighbors into account.

To exemplify this concept we choose to discuss it in the
context of the much-used Cora dataset, for which node fea-
ture vectors contain binary indication of the presence or ab-
sence of certain key words in the abstracts of scientific publi-
cations [Sen et al., 2008]. For this dataset unique information
takes the form of key words, which are present in only one ab-
stract in a given neighborhood, redundant information refers
to keywords, which are repeatedly present, and synergistic in-
formation refers to insight that can be gained by observing a
certain combination of keywords or edges in a given neigh-
borhood.

3.2 Information Captured by Aggregators

Now we observe which information is captured by the stan-
dard GNN formulation [Bronstein et al., 2021], where the
representation of node w is updated as

h, = Aggregate({p(hy, hy) 1 v € N(u)}), 3)

where the aggregator collects pairwise messages between the
central node and each neighbor. Given that ¢ function pro-
cesses representations pairwise and in conjunction with the
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Figure 2: An illustration of the aggregation and update of the representation of node v; using a GOAT layer. A self-attention
mechanism is used in order to obtain a ranking between the nodes of the neighborhood and then the ordered neighborhood is
given as input into a sequence model (LSTM) to produce the updated representation of node v;.

central node, any interactions among neighbors are ignored
by the aggregator (see Figure 1). Thus, the amount of infor-
mation that is captured equals 57, £ (hu; o).

To discuss this aggregation scheme we consider the ex-
ample of a neighborhood with only two independently dis-
tributed neighbors vi,v2. The captured information is
expressed in terms of the PID as follows, I(hy;h,,) +
I(hy; hy,) = Uy, +U,, + 2R, which is different from the to-
tal structure-informed mutual information I(hy; by, , hey) =
Uy, + Uy, + R+ S. Thus, the captured information from a
GNN is less than the information present in the neighborhood
due to the absence of synergistic information. Therefore, in-
stead of using a pairwise function ¢, we advocate the use of
a function ¢ : RV(@Ixd _y RIN(wIxd that simultaneously
processes all the information among neighbors as follows

h, = Aggregate(y)({h, : v € N'(u)})).

From an information-theoretic viewpoint, our formulation
has the following advantages: Firstly, the redundant infor-
mation can be efficiently treated, as common parts of R can
be detected and ignored if needed. Secondly, the synergis-
tic information can now be captured, due to the ability of 1)
function to observe the behavior of the neighborhood A (u)
altogether.

4 Graph Ordering Attention Layer

We now present the architecture of our Graph Ordering At-
tention (GOAT) layer and highlight its theoretical advantages
over other message-passing models. A deep GNN can be con-
structed by stacking several GOAT layers.

4.1 GOAT Architecture

A GOAT layer (illustrated in Figure 2) consists of two parts:

1) The Ordering part (red box in Figure 2) transforms
the unordered multiset of neighbor hidden state vectors
{h1,ha,...,hp}, where P = fﬁ(v) , into an ordered se-
quence of feature vectors,

-y hr(py] = OrderingPart({hy, ha,...,hp}),

where the ordering is given by the permutation function 7 (-).

Similar to the GAT [Veli¢kovi¢ et al., 2018a] model, for
each node v; € V, we first apply a shared linear transforma-
tion parameterized by a weight matrix W1 € R4 %" and then
perform a shared self-attention mechanism parameterized by

(Pr(1ys Prc2ys - -

a weight ws € RM, that takes as input the concatenated fea-
tures of the two nodes, and computes the attention coefficients

eij = LeakyReLU (MQT[Wlthwl hﬂ) s (4)

for all j s.t. v; € N(v;). Then, we sort the coefficients

€in(1)s €in(2)s - - - » Cim(P) = SOTL (€51, €52, ..., €iP),

obtaining a specific permutation 7 of the nodes in the
neighborhood. Then we construct the sorted sequence of
node features based on the permutation 7: hgopreqiy =
[Pr(1ys P2y, - - -, hr(py]. Notice that we use the attention co-
efficients only to construct an ordering of the neighborhood.
Therefore, we do not apply the softmax function to them and
we do not multiply the attention scores with the hidden states.

2) The Sequence modeling part (yellow box in Figure 2)
takes as input the ordered sequence of the nodes, processes it
using a shared sequence model and generates the new hidden
state. In our experiments we used an LSTM [Hochreiter and
Schmidhuber, 1997] as the sequence model

h?ew = LSTM(hsorted(i)>' (5)

Multi-Head Attention Ordering. We can also employ
multi-head attention to provide additional representational
power to our model. We see several advantages in the con-
sideration of multiple heads in our architecture. If only one
sensible ordering of the nodes in a neighborhood exists, then
multiple heads can help us estimate this ordering more ro-
bustly. If on the other hand there exist several sensible or-
derings of the nodes in a neighborhood, then a multi head
architecture allows us to take all into account in our model.

Let K be the number of the attention heads. Equation (4)
for the k-th attention head is transformed as

e, = a*(Wih;, Wih;).

Then we sort the K sets of attention coefficients obtaining
multiple orderings in the neighborhood,

h,;orted(i) - [hﬂ-k(l), hﬂ-k(Q), ey hﬂ.k(p)]

To generate the final representation of the nodes we concate-
nate the features from the K independent LSTM models, i.e.,

K
hIew — H LSTM* (hgorted(i)) ’
k=1



Table 1: Classification accuracy (£ standard deviation) on the “Top-2 pooling” synthetic dataset and MSE (% standard devia-

tion) results on the synthetic datasets “"Betweenness Centrality” and “Effective Size” for two different types of random graphs

Method Top-2 pooling

Betweenness Centrality (MSE)

N=1000, p=0.01

Effective Size (MSE)

N=100, p=0.09

N=1000, p=0.01

0.0020 £0.0008
0.0221 £0.0069
0.0153 £0.0105
0.0042 £0.0015
0.0220 £0.0068

0.0135 £0.0067
0.0374 £0.0085
0.0022 £0.0017
0.0024 +0.0016
0.0382 +0.0079

0.0038 +0.0012
0.0243 £+0.0056
0.0008 £0.0002
0.0007 £0.0003
0.0248 £+0.0056

(Accuracy) N=100, p=0.09
GCN 57.35 £4.13  0.0063 % 0.0036
GraphSAGE (mean) 61.45 £5.79  0.0401 +0.0158
GraphSAGE (Istm) 65.05 £8.71  0.0094 £0.0073
GIN 56.40 £5.26  0.0083 +0.0052
GAT 53.34 £2.43  0.0409 £0.0158
GOAT 71.70 £5.17  0.0032 £0.0014

0.0005 £0.0001  0.0010 £0.0005  0.00007 +0.00003

Permutation-Equivariance and Injectivity of GOAT Re-
call from Section 2.1 the permutation-equivariance and injec-
tivity are desirable properties for a GNN layer to have. We
will now prove that our GOAT layer satisfies both of these
criteria.

Proposition 4.1. The GOAT layer performs a permutation-
equivariant transformation of the hidden states.

The proof of Proposition 4.1 can be found in Appendix A.

Proposition 4.2. The GOAT layer is able to approximate any
measurable injective function arbitrarily well in probability.

The proof of Proposition 4.2 relies on the universal approxi-
mation result by [Hammer, 2000] and is in Appendix B.

5 Experimental Evaluation

We perform an extensive evaluation of our GOAT model and
compare against a wide variety of state-of-the-art GNNs, on
three synthetic datasets (see Sections 5.1 and 5.2) as well as
on six node-classification benchmarks (see Section 5.3). Our
implementation can be found in the Supplementary Material.

Baselines. We compare GOAT against the following state-
of-the-art GNNs for node classification: (1) GCN [Kipf and
Welling, 2017] the classical graph convolution neural net-
work, (2) GraphSAGE(mean) [Hamilton ef al., 2017] that ag-
gregates by taking the elementwise mean value, (3) Graph-
SAGE(Istm) [Hamilton et al., 2017] that aggregates by feed-
ing the neighborhood hidden states with a random order into
an LSTM, (4) GIN [Xu er al., 2019] the injective summa-
tion aggregator, (5) GAT [Veli¢kovié er al., 2018a] that ag-
gregates with a learnable weighted summation operation. We
also compare with a (6) standard MLP that only uses node
features and does not incorporate the graph structure.

Setup For a fair comparison we use the same training pro-
cess for all the models adopted by [Velickovié et al., 2018al.
We use the Adam optimizer [Kingma and Ba, 2015] with an
initial learning rate of 0.005 and early stopping for all mod-
els and datasets. We perform a hyperparameter search for all
models on a validation set. The hyperparameters include the
size of hidden dimensions, dropout, and number of attention
heads for GAT and GOAT. We fix the number of layers to 2.
More information about the datasets, the training procedure,
and the hyperparameters of the models are in Appendix C.

5.1 Top-2-Pooling

We designed this synthetic task to highlight redundancy and
synergistic information in a node classification task.

Setup. We sample Erd6s—Rényi random graphs with 1000
nodes and a probability of edge creation of 0.01. We draw
1-dimensional node features from a Gaussian Mixture model
with three equally weighted components with means 1, 1 and
2 and standard deviations 1,4 and 1. Then, we label each
node with a function ¢(-,-) of the two neighbors that have
the two different largest features, i.e., to each node u € V
we assign a label y, = ¢(x4,2p), where z, and x; are
the largest, distinct node features of all nodes in the 2-hop
neighborhood of w with nodes features at a distance of 2
being down-weighted by a factor of 0.8. We set ¢ to be
¢(q,21) = +/exp(z,) + exp(xy). Finally, to transform
this task to node classification we bin the y values into two
equally large classes. We use 60% of nodes for training, 20%
of nodes for validation and 20% for testing.

We report the average classification accuracy and the stan-
dard deviation across 10 different random graphs in Table 1.
Our model outperforms the other GNNs with a large mar-
gin. In the context of this simulation study, we explain this
performance gap with the following hypothesis. To find the
largest element of a set you must consider 2-tuple relation-
ships therefore synergistic information is crucial for this task.
An LSTM can easily perform the necessary comparisons with
a 2-dimensional hidden space. As nodes are processed they
can either be discarded via the forget gate, if they are smaller
than the current hidden state, or the hidden state is updated to
contain the new feature node. In contrast, typical GNNs need
exponentially large hidden dimensions in order to capture the
necessary information as they cannot efficiently discard re-
dundant information. We observe that GraphSage(Istm) is
the second-best performing model due to its LSTM aggre-
gator. However, it does not learn a meaningful ordering of
the nodes that is important for the task.

5.2 Prediction of Graph Structural Properties

The synthetic experiments in this section establish the ability
of our GOAT model to predict structural properties of nodes
in the absence of node features. The first task is to predict the
betweenness centrality of each node and the second task is to
predict the effective size of each node. Both of these metrics
are affected by the interactions between the neighbor nodes
so synergistic information is crucial for these tasks.



Table 2: Results in terms of classification accuracy on node classification benchmarks. We highlight the best performing model

and underline the second best.

Method Cora Citeseer Disease LastFM Asia Computers Photo
MLP 43.8 529 79.10 £0.97 62.23 80.04 89.68
GCN 81.4 67.5 88.98 +£2.21 75.87 84.81 92.16
GraphSAGE (mean)  77.2 65.3 88.79 £1.95 75.80 87.53 93.01
GraphSAGE (Istm) 74.1 59.9 90.50 £2.15 80.72 89.53  92.61
GIN 75.5 62.1 90.20 +2.23 78.43 89.56 92.88
GAT 83 69.3 89.13 £2.22 77.57 79.28 91.77
GOAT 82.8 69.5 90.53 +2.26 81.02 89.67 93.21

The betweenness centrality b(u) is a measure of centrality
of a node u based on shortest paths involving w. It has many
applications in network science, as it is a useful metric for
analyzing communication dynamics [Goh er al., 2003]. It can
be computed using the following equation

b(u) — Z o(s,tlu)

s,teV 0(8’ t) ’

where o (s, t) is the number of distinct shortest paths between
vertices s and ¢, and o (s, t|u) is the number of these shortest
paths passing through w.

The effective size e(u) [Everett and Borgatti, 2020] of node
u is based on the concept of redundancy and for the case of
unweighted and undirected graphs, can be computed as

2q
e(u) =n —
where ¢ is the number of ties in the subgraph induced by the
node set M (u) (excluding ties involving u) and n = [N (u)]
is the number of neighbors (excluding the central node).

We set the input features as the identity matrix, i.e., X =
In and we use two parameter settings to sample Erd6s—Rényi
random graphs, namely (N, p) € {(100,0.09), (1000,0.1)},
where N is the number of nodes and p is the probability of
edge creation. We use 60% of nodes for training, 20% for
validation and 20% for testing. We train the models by mini-
mizing the Mean Squared Error (MSE).

We report the average mean and standard deviation across
10 graphs of each type in Table 1. Our proposed GOAT model
outperforms all models in both tasks and in both graph pa-
rameter settings. GOAT is able to capture the synergistic in-
formation between the nodes, which is crucial for predicting
the betweenness centrality and effective size. The other ag-
gregators lose the structural information of nodes in neigh-
borhoods. We also observe that GraphSAGE with LSTM ag-
gregator that uses a random node ordering is not on par with
GOAT, indicating that the learned ordering in GOAT is of use.

5.3 Node Classification Benchmarks

We utilize six well-known node classification benchmarks to
validate our proposed model in real-world scenarios. Specif-
ically, we use 2 citation network benchmark datasets: Cora,
Citeseer [Sen et al., 2008], 1 disease spreading model: Dis-
ease [Chami er al., 2019], 2 co-purchase graphs: Amazon

X 3 457

Figure 3: Neighborhoods of yellow nodes (ids: 467, 5313 and
6931) in the Amazon Photo dataset, which are misclassified
by GAT and GIN and correctly classified by GOAT.

Computers, Amazon Photo [Shchur et al., 2019] and 1 social
network: LastFM Asia [Rozemberczki and Sarkar, 2020].

We report the classification accuracy results in Table 2. Our
model outperforms the others in five out of six datasets. This
demonstrates the ability of GOAT to capture the interactions
of the nodes, that are crucial for the learning task.

5.4 Case Study

In Figure 3 we visualize three neighborhoods of nodes in the
Amazon Photo dataset, which were misclassified by the GAT
and GIN models, but correctly classified by our GOAT model.
In all three neighborhoods, we observed the same structural
pattern: they are dense, i.e., the node to be classified has a
small effective size. Dense neighborhoods contain a large
amount of synergistic information. This observed pattern
supports our hypothesis, that the GOAT model outperforms
current GNN models due to its ability to capture synergistic
information and to effectively discard redundant information.

6 Conclusion

We have introduced a novel view of learning on graphs by in-
troducing the Partial Information Decomposition to the graph
context. This has allowed us to identify that current aggre-
gation functions used in GNNs often fail to capture synergis-
tic and redundant information present in neighborhoods. To
address this issue we propose the Graph Ordering Attention
(GOAT) layer, which makes use of a permutation-sensitive
aggregator capable of capturing synergistic and redundant
information, while maintaining permutation-equivariance of
the GOAT layer. The GOAT layer is implemented by first
learning an ordering of nodes using a self-attention and by
then applying a recurrent neural network to the ordered rep-
resentations. This theoretically grounded architecture yields
improved accuracy in the node classification and regression



tasks on both synthetic and real-world networks. Potential fu-
ture work includes the experimentation with thresholds on the
attention to improve the computational efficiency of GOAT
and to investigate alternative attention mechanisms.
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Appendix
A Proof of Proposition 4.1

For this proof we will make use to of the following fact,
typically GNNs construct permutation-equivariant functions
on graphs by applying a permutation-invariant local function
over the neighborhood of each node [Bronstein er al., 2021].
To establish the permutation-equivariance of the GOAT layer
it therefore suffices to show that the node-wise operation per-
formed by our GOAT layer is permutation-invariant. To do so
we make use of the following proposition which concerns the
permutation-invariance of composed functions.

Proposition A.1. For any function f : X — Y and for any
permutation-invariant function g : Z — X, their composition
f o g is permutation-invariant.

Now since the GOAT layer is formed by the composition
of the Sequence Modelling Part and the Ordering Part, by
Proposition A.1 it suffices to show that the Ordering Part is
permutation-invariant to establish the permutation-invariance
of their composition. Recall, that in the Ordering Part of the
GOAT layer we implement an attention mechanism on the
hidden states of the central node and each neighboring node.
Then, nodes are reordered according to the magnitude of the
attention coefficients. Crucially, these computations are inde-
pendent of the node labelling, making the Ordering Part of the
GOAT layer permutation-invariant. Consequently, we apply
a local permutation-invariant function rendering the action of
the GOAT layer on the graph permutation-equivariant.

B Proof of Proposition 4.2

Our GOAT layer is a functional composition of the Order-
ing Part and the Sequence Modeling Part described in Section
4.1. Since the composition of two injective functions is injec-
tive itself, it suffices to show that each of the two compoents
is injective.

We begin by considering the Ordering Part, which maps
a multiset of hidden states to an ordered multiset of hidden
states leaving the elements of these multisets unchanged. If
therefore, for two multisets the same output is generated in
the Ordering Part, then their elements are equal. Two multi-
sets with all equal elements are equal themselves. Therefore,
the Ordering Part of our GOAT layer is an injective function.

For the Sequence Modeling Part we make use of Theorem
3 from [Hammer, 2000, p. 6], which establishes that recurrent
nerual networks can approximate any measurable function ar-
bitrarily well in probability. Therefore, the LSTM that we
employ in the Sequence Modeling Part can approximate any
measurable injective function arbitrarily well in probability,
thus providing us with the desired result.

C Experimental details

Datasets Details In our experiments we utilize six well-
known node classification benchmarks. We describe them
below:

e 2 citation network benchmark datasets: Cora, Citeseer
[Sen et al., 2008], where nodes represent scientific pa-
pers, edges are citations between them, and node labels
are academic topics. We follow the experimental setup
of [Kipf and Welling, 2017] and use 140 nodes for train-
ing, 300 for validation and 1000 for testing. We optimize
hyperparameters on Cora and use the same hyperparam-
eters for Citeseer.

* 1 disease spreading model: Disease [Chami et al., 2019].
It simulates the SIR disease spreading model [Anderson
and May, 1992], where the label of a node indicates if
it is infected or not. We follow the experimental setup
of [Chami et al., 2019] and use 30/10/60% for training,
validation and test sets and report the average results in
10 different splits.

e 2 co-purchase graphs: Amazon Computers, Amazon
Photo [Shchur er al., 2019]. Nodes represent products
and edges represent that two products are frequently
bought together. The node label indicates the product
category. We use 60/20/20% for training, validation and
test sets. We optimize hyperparameters on Computers
and use the same hyperparameters for Photo.

e 1 social network: LastFM Asia [Rozemberczki and
Sarkar, 2020]. Nodes are LastFM users from Asian
countries and edges are mutual follower relationships
between them. The label of each node is the country
of the user. We use 60/20/20% for training, validation
and test sets.

We report further summary statistics of these datasets in Table
3.

Synthetic Experiments: Prediction of Graph Structural
Properties (node regression) For the GCN and GraphSage
model we transform the input features with a linear layer and
then use 2 convolutional layers followed by 1 linear layer. To
optimize the hyper-parameters we perform a grid-search on
the following values: linear = {4, 8, 16,32, 64} for the first
linear layer, convl = {4,8,16, 32,64} for the first convo-
lutional layer, conv2 = {4,8,16,32} for the second con-
volutional layer. For the GAT and GOAT model we opti-
mize the following hyper-parameters: nheads = {1,4,8}
for the number of heads, convl = {4,8,16,32,64} for the
first convolutional layer, conv2 = {4,8,16,32,64} for the
second convolutional layer. We search for the best model on
(N = 100,p = 0.09) and we use the same models for the
other configuration of each task (N = 1000, p = 0.1).

Node classification Benchmarks. For node classification
benchmarks we follow the same model configurations as with
node regression above and we just remove the last linear lay-
ers from all the models.



Cora Citeseer Disease LastFM Asia Computers Photo

# Nodes 2708 3327 1044 7624 13752 7650
# Edges 5429 4732 1043 27806 245778 119043
# Features/Node 1433 3703 1000 128 767 745
# Classes 7 6 2 18 10 8
# Training Nodes 140 120 312 4574 9625 5354
# Validation Nodes 300 500 105 1525 1376 765
# Test Nodes 1000 1000 627 1525 2751 1531

Table 3: Summary of the datasets used in our experiments.
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